آموزش اِستم: چارچوبی برای رویارویی با بحران رشته‌های ریاضی دانشگاهی در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 این مقاله، مستخرج از رساله نویسنده اول برای دریافت مدرک دکتری آموزش ریاضی از دانشگاه شهیدبهشتی است.

2 استاد دانشگاه شهیدبهشتی

3 عضو هیأت علمی سازمان پژوهش‌وبرنامه‌ریزی آموزشی، پژوهشگاه مطالعات آموزش- و پرورش

چکیده

در ایران، رشته­های ریاضی دانشگاهی از شروع دهه 1390، با افت کمّی و کیفی فزاینده­ای مواجه شده­است و سیاست­گذاران آموزش­عالی را با چالش مواجه کرده­است. به­ویژه جایگزینی آموزش حضوری با آموزش­مجازی در دوران همه­گیری و حضور پُررنگ تکنولوژی دیجیتال و هوش­مصنوعی، مانند شتاب­دهنده­ای[1] عمل­کرد که هم سلیقة یادگیری و انتظار دانشجویان را از تحصیلات دانشگاهی­ تغییرداد و هم قواعد بازارکار را دگرگون­نمود. برای رویارویی با این­بحران، رویکردمتفاوتی به چهارحوزه «علوم[2]-تکنولوژی-مهندسی-ریاضی» (اِستِم) در آموزش­عالی، توجه دوباره­ای را جلب­کرد. هدف از این­پژوهش، بررسی استفاده­ از آموزش­اِستم برای رویارویی با چالش­های رشته­ریاضی دانشگاهی درایران بود. بدین­منظور، ابتدا سیرتاریخی توجه به­­رشته­های تشکیل­دهنده اِستم در ایالات­متحده که خاستگاه این آموزش­بوده، مطالعه­شد. سپس با مرور نظام­وار[3] اسناد، ابتکارهای پنج کشور که هرکدام نقش­عمده­ای در پیشبرد اِستم داشته­اند، استخراج­شده و چارچوبی برای مواجهه با بحران رشته‌های ریاضی دانشگاهی در ایران تدوین‌ شد. دستاورد اصلی این مطالعه این‌است که آموزش­اِستم، نیازمند مشارکت بین­گروهی/ بین­دانشکده­ای و مراکز پژوهشی دانشگاه­ها با تبیین هدف­مشترک، حمایت از پژوهش­های تلفیقی توسط سیاست­گذاران، توانمند‌سازی نیروی‌انسانی در مدرسه و دانشگاه از طریق توسعه‌حرفه‌ای، عبور از برنامه­های آموزشیِ تجویزی و همچنین توجه به‌نقش­کلیدی ریاضی در توسعة تکنولوژی و هوش­مصنوعی و متحول­شدن بازار‌کار است.
 
[1] Accelerator
[2] در این مقاله، علوم و علوم­تجربی مترادف هم آمده­اند.
[3] Research Synthesis

کلیدواژه‌ها

موضوعات


BlackPast, B. (2014, February 18). (1890) Second Morrill Act. BlackPast.org. https://blackpast.org/african-history/second-morrill-act-1890/
Borrego, M., & Henderson, C.R. (2014). Increasing the Use of Evidence‐Based Teaching in STEM Higher Education: A Comparison of Eight Change Strategies. Journal of Engineering Education, Vol. 103 (2),  Special Issue: The Complexities of Transforming Engineering Higher Education. April 2014, Pages 220-252. Wiley Online Library.
Brand, B.R. (2020). Integrating science and engineering practices: Outcomes from collaborative professional development. International Journal of STEM Education, 7, 1-13. USA Science & Engineering Festival.
Burrows, A.; Lockwood, M.; Borowczak, M.; Janak, E. & Barber, B. (2018). Integrated STEM: Focus on informal education and community collaboration through engineering. Education Sciences. 8(1), 1-15. MDPI
Capraro, R.M. & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers for the age of innovation. ALLEN Institute. Open Science Tools.
Chandan, D.; Magana, A. J. & Vieira, C. (2019). Investigating the affordances of a CAD enabled learning environment for promoting integrated STEM learning. Computers & Education. 129, 122–142. ScienceDirect.
Chen, X. (2009). Students Who Study Science, Technology, Engineering, and Mathematics (STEM) in Postsecondary Education. Stats in Brief. NCES 2009-161. National Center for Education Statistics.
Çolakoğlu, M. H. (2018). Integration of Transdisciplinary STEM Approach to Single Discipline-Based National Education Systems. International Society for Research in Education and Science (ISRES). (PP 94-112). Education Research Highlights in Mathematics, Science and Technology.
Corlu, M. S.; Capraro, R. M. & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers in the age of innovation. Education and Science, 39(171), 74-85.
Çorlu, M. A. & Aydin, E. (2016). Evaluation of Learning Gains Through Integrated STEM Projects. International Journal of Education in Mathematics, Science and Technology. Special Issue on STEM Education). Vol.4, No.1, 20-29. Ismail Sahin. Turkey. ISSN: 2147-611X (Online).
Cloutier, A.; Dwyer, J. & Sherrod, S.E. (2016). Exploration of Hands-On/Minds-On Learning in an Active STEM Outreach Program. Conference: American Society of Engineering Education 123rd Annual Conference & Exposition. New Orleans.
Durando, M. (2022). School innovation Forum 2022: A Day to Rethink the Schools of Tomorrow.
Dugger, W. (2010). Evolution of STEM in the United States. In Technology Education Research Conference. Queensland.
Eady, S. (2008). What is the Purpose of Learning Science? An Analysis of Policy and Practice in the Primary School. British Journal of Educational Studies, 56, 19 - 4. Taylor & Fancis Online.
Freeman, B., Marginson, S. & Tytler, R. (2014). Widening and deepening the STEM effect. In The age of STEM (pp. 1-21). Routledge.
Gonzalez, H.B. & Kuenzi, J. J. (2012). Science, Technology, Engineering, and Mathematics (STEM) Education: A Primer [August 1, 2012].
Granovskiy, B. (2018). Mathematics (STEM) Education: An Overview. Congressional Research Service. 33 pages.
Henderson, C., & Dancy, M. H. (2009). Impact of physics education research on the teaching of introductory quantitative physics in the United States. Physical Review Special Topics-Physics Education Research5(2), 020107. American Physical Society.
Honey, M.; Pearson, G. & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press.
Kaleva, S.; Pursiainen, J.; Hakola, M.; Rusanen, J. & Muukkonen, H. (2019). Students’ reasons for STEM choices and the relationship of mathematics choice to university admission. International Journal of STEM Education, 6, 1-12.
Kelley, T.R. & Knowles, J.G. (2016). A conceptual framework for integrated STEM education. International. Journal of STEM Education.  3, 1. Springer Open.
Kober, N. (2015). Reaching students: What research says about effective instruction in undergraduate science and engineering. National Academies Press.
Li, Y. and Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as “given” in STEM education. Int. J. STEM Educ. 6:44. doi: 10.1186/s40594-019-0197-9
Marginson, S.; Tytler, R.; Freeman, B. & Roberts, K. (2013). STEM: country comparisons: international comparisons of science, technology, engineering and mathematics (STEM) education. Final report.
Meaders, C.L.; Lane, A.K.; Morozov, A.; Shuman, J.K.; Toth, E.; Stains, M.; Stetzer, M.R.; Vinson, E.L.; Couch, B.A. & Smith, M.K. (2020). Undergraduate Student Concerns in Introductory STEM Courses: What They Are, How They Change, and What Influences Them. Journal for STEM Education Research, 1-22.
Moore, T.J.; Stohlmann, M.S.; Wang, H.; Tank, K.M.; Glancy, A.W. & Roehrig, G.H. (2014). Implementation and integration of engineering in K-12 STEM education.
Moore, T. J.; Johnston, A. C. & Glancy, A. W. (2020). A Synthesis of Conceptual Frameworks and Definitions. In C. Johnson, M. Mohr-Schroeder, T. Moore, & L. English (Eds.), Handbook of Research on STEM Education (pp. 3-16). New York, NY: Routledge
Nadelson, L. S. & Seifert, A. L. (2017). Integrated STEM defined: Contexts, challenges, and the future. The Journal of Educational Research, 110(3), 221–223.
National Education Association: NEA. (2022). RESEARCH LAND GRANT UNIVERSITY BRIEF No.1
National Research Council. (2004). The Mathematical Sciences' Role in Homeland Security: Proceedings of a Workshop. Washington, DC: The National Academies Press.
National Research Council. (2011). Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Committee on Highly Successful Science Programs for K-12 Science Education, Board on Science Education and Board on Testing and Assessment, Division of Behavioral and Social Sciences Education. Washington, DC: The National Academies Press.
NSF: STEM Education for the Future: A Visioning Report. May 2020.
Parvaneh, S. A. & Rejali, A. (2019). Warning to the mathematical community and those interested in the sustainable development of the country.  Mathematical Culture and Thought. Term 38, No. 2. 13-35. Iranian Mathematical Society. (In Persian.)
Razi, A. & Zhou, G. (2022). STEM, iSTEM, and STEAM: What is next? International Journal of Technology in Education (IJTE), 5(1), 1-29.
Roehrig, G.H.; Dare, E.A.; Ring‐Whalen, E.A. & Wieselmann, J.R. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal of STEM Education, 8, 1-21.
Sanders, M. (2009). STEM, STEM education, STEM mania. The Technology Teacher, 68(4), 20-26.
Sanders, M. (2012). Integrative STEM education as “best practice”. Paper presented at the Seventh Biennial International Technology Education Research Conference, Queensland, Australia.
Sheffield, R., Koul, R.B., Blackley, S., Fitriani, E., Rahmawati, Y., & Resek, D. (2018). Transnational Examination of STEM Education. International Journal of Innovation in Science and Mathematics Education, 26.
Teo, T. W. & Choy, B. H. (2021). STEM Education in Singapore. In O. S. Tan; E. L. Low; E. G. Tay & Y. K. Yan. (Eds.), Singapore Math and Science Education Innovation: Beyond PISA (PP. 43-59). Singapore: Springer
Tytler, R. (in press). STEM Education for the 21st Century. In J. Anderson & Y. Li (Eds.). Integrated Approaches to STEM Education: An International Perspective. Springer Nature.
Vasquez, J. & Sneider, C. (2015). STEM--Beyond the Acronym. Educational Leadership. 72(4), 10-15. ASCD.
Wang, H. H.; Moore, T.J.; Roehrig, G.H. & Park, M.S. (2011). STEM Integration: Teacher Perceptions and Practice. Journal of Pre-College Engineering Education Research, 1(2)
Wells, J. G. & Ernst, J. V. (2012). Integrative STEM education. Virginia Tech School of Education.
Zangeneh, B. Z. (2015). The Historical Development of Bachelor of Science in Mathematics in Iran: Focusing on Sharif University of Technology. Journal of Higher Higher Education Curriculum Studies. Vol. 6, No. 12, 99-134. Iranian Curriculum Studies Association: ICSA. (In Persian.)